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Analytical solution to a nonseparable interaction model for a one-dimensional fluid of anisotropic
molecules near a hard wall
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We introduce a one-dimensional fluid model of anisotropic molecules near a hard wall having a nonsepa-
rable interaction and yet being analytically solvable. We compute radial and angular profiles of the particles as
well as the equation of state of the system. The model is worked out for two different hard core potentials and
the results are compared to a Monte Carlo simulation. We find that the model provides a very accurate
description of the system except in the limit of low pressure and large particle anisotropy where the fluctuation
of the particle orientations become too large. In particular, the nonseparable character of the particle interaction
potential leads to a coupling of the radial and angular parts of the one-body distribution that allows for a study
of the correlation between the alignment of the particles and their distance to the hard wall. This feature
constitutes a remarkable qualitative improvement with respect to any separable interaction model in which the
radial and angular variables are necessarily decoupled.@S1063-651X~99!02602-1#

PACS number~s!: 61.30.Cz, 61.30.Gd, 61.20.Ja, 05.70.Ce
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I. INTRODUCTION

‘‘Theoretical many-body physics . . . is an art. The a
. . . is that of constructing simple solvable relevant mode
whose solutions are simply expressed.’’ With these wo
Percus@1# resumes a whole current of thought in physics t
bases the understanding of physical systems upon the e
solution to simple, idealized models. One of these model
the keystone of statistical mechanics: the Ising model, wh
exact solution is known in one and two dimensions. T
model has given rise to a whole bunch of exactly solva
lattice models of different physical systems@2#.

The physics of fluids has also benefited from this ‘‘art
The fluid counterpart of the Ising model is the hard sph
fluid, which in one dimension is called the hard rod fluid@3#.
Although known for more than a century, this model h
provided relevant information only recently. The origin
works of Lord Rayleigh@3# and Tonks@4# provided the
equation of state of this fluid. The distribution function of th
homogeneous hard rod model was obtained half a cen
ago@5# and its direct correlation function did not appear un
the 1970s@6#. However, perhaps the highest achievem
with this model is Percus’s obtention of itsexactHelmholtz
free-energy density functional@7#. This solution has proved
crucial in the understanding of density functional theory@8#,
one of the most powerful analytical tools we currently ha
at our disposal to obtain the phase behavior of fluids.

The original hard rod model has been extended in diff
ent directions. A closely related model in the way towar
two-dimensional fluids is the system of parallel hard squa
in a narrow channel@9#, which can be generalized to a mu
PRE 591063-651X/99/59~2!/1957~11!/$15.00
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ticomponent system of hard particles with a next-neigh
interaction @1#. An extension to include attractions is th
fluid of adhesive hard rods, whose grand potential has b
obtained as a functional of the density profile@7#. Associat-
ing hard rods have also been considered as a model of p
merization@10#.

Fluids of anisotropic particles have also received attent
in the context of solvable models. Basically there are t
ways of introducing orientational degrees of freedom in o
dimension~where, strictly speaking, rotations are exclude!:
Either we can restrict the center of mass of, say, ellipse
lay on a straight line but allow them to interact as tw
dimensional objects or we can consider only their projectio
on the line and let particles interact through these proj
tions. The former system captures an essential feature of
ids of anisotropic particles, namely, that positions and ori
tations are strongly coupled and hence it is difficult to stu
@11#; the latter is far simpler because rotations and orien
tions can be separated, which permits one to solve it exa
@12,13#. In spite of being separable, this model reveals i
portant information on the structure of the direct correlati
function; for instance, it explicitly shows that conformal a
proximations will necessarily fail@13#.

The separable model can be used as an approximatio
the nonseparable one. Their respective equations of stat
essentially indistinguishable@14# and the adsorption profile
near a wall are very similar at high pressure or low anis
ropy @14#. However, out of this regime, the separable mod
overestimates the orientation in the bulk and this leads
significant deviations of the adsorption profiles. In this r
gime nonseparability has observable effects. Truly nonse
rable models are difficult to solve analytically@11#. Thus the
1957 ©1999 The American Physical Society
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1958 PRE 59MARTÍNEZ-HAYA, PASTOR, AND CUESTA
aim of this work is to introduce a highly idealized model
which nonseparability is implemented in the simplest p
sible way and yet the model remains analytically tractab
With the help of this model we will show that despite i
implicity it accounts for the differences in the angular pr
files far and close to a hard wall and that this corrects for
discrepancies in the adsorption profiles.

The paper is organized as follows. In Sec. II the nonse
rable interaction model for the one-dimensional fluid is p
sented. In Sec. III the analytical expressions for the part
radial and angular density profiles are derived and th
asymptotic behavior is discussed. In Sec. IV the Monte Ca
simulation method for the title system is described. In Sec
the analytical radial and angular density profiles from
present model are worked out for two different interacti
potentials and the results are compared to the Monte C
profiles and to the prediction of a separable interaction mo
reported previously. The results are summarized in Sec
and final conclusions are drawn.

II. MODEL

Let us consider a system ofN freely rotating hard ellipses
with their centers of mass restricted to move along a segm
of length L. The ellipses interact by means of a neare
neighbor hard core pair potential of the form

F~ ux2x8u;f,f8!5H 0 if ux2x8u.s~f,f8!

` if ux2x8u,s~f,f8!,
~1!

wheres(f,f8) represents the contact distance between
neighboring hard ellipses with orientationsf and f8, re-
spectively.

Only a limited number of exact results can be obtained
this general problem@11#. On the other hand, it has bee
shown that the partition function and the properties of t
system can be derived analytically if the contact distanc
assumed to be separable:s(f,f8)5s(f)1s(f8). Rea-
sonable results are obtained within this approximation for
equation of state as well as the radial and angular den
distributions@13,14#.

One of the main drawbacks of assuming a separable
tact distance is that it leads to a full decoupling between
angular and radial profiles of the particles. Thus the sa
angular distribution is obtained at all distances from the h
wall. This prediction is in contradiction with the results
the Monte Carlo simulation~and common sense! for the sys-
tem, where a higher degree of alignment~i.e., a narrower
angular density profile aroundf50°) is obtained in the
proximity of the hard wall than at large distances from
~bulk limit! as a consequence of the larger concentration
particles@14#.

In an attempt to correct for these limitations, in th
present work we propose a simple nonseparable mode
the hard core interaction whose properties can still be de
mined analytically. It will be shown that such a model intr
duces a realistic coupling between the equilibrium angu
and radial density profiles.

We assume a nonseparable contact distance of the fo
-
.
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s~f,f8!5H sm~f!1sm~f8! if ff8.0

sM~f!1sM~f8! if ff8,0, ~2!

where sm(f) and sM(f) are two different functions tha
define the effective contact radius of each ellipse. In t
way, the contact distance between two neighboring ellip
also depends on their relative orientation. This is proba
the simplest nonseparable functional form fors(f,f8) that
can be considered, its physical interpretation being tha
different type of contact function applies whether both
lipses are in a ‘‘head-to-head’’ configuration@ff8,0, Fig.
1~a!# or in a ‘‘parallel’’ configuration@ff8.0, Fig. 1~b!#.
This is in contrast to any separable interaction model, wh
f and f8 are fully decoupled and thens(f,f8)5s
(2f,f8)5s(f,2f8).

The canonical partition function for this system is, as
the separable model@14#, that of a system of hard rods wit
variable (f-dependent! lengths, averaged over all possib
orientations, i.e.,

FIG. 1. ~a! and~b! Diagrams illustrating the separation betwe
the centers of two neighboring particles at contact for the~a!
‘‘head-to-head’’ configuration @ff8,0,s(f,f8)5sM(f)
1sM(f8)# and ~b! ‘‘parallel’’ configuration @ff8.0,s(f,f8)
5sm(f)1sm(f8)#. ~c! Dependence on the orientation anglef of
the contact distance functionssM(f) andsm(f) used to construct
the two model potentials~models 1 and 2! for the computation of
the analytical density profiles@see expressions~37!–~40!#.
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ZN~b,L !5E
2p

p df1

2p
•••E

2p

p dfN

2p E
0

L

dx1•••E
0

L

dxN

3expH 2b(
j 50

N

F~ uxj2xj 11u;f,f8!J
5E

2p

p df1

2p
•••E

2p

p dfN

2p

1

N!

3S L2(
j 50

N

s~f j ,f j 11!D N

3QS L2(
j 50

N

s~f j ,f j 11!D . ~3!

Here xj and f j denote, respectively, the position and t
orientation of thej th particle,b5(kBT)21 is the inverse of
the absolute temperature in units of the Boltzmann const
andQ(x) is the Heaviside step function, equal to 1 ifx.0
and 0 if x,0.

The boundary conditions imposed by the hard walls
both ends of the segment is implemented in Eq.~3! as the
interaction of the first (j 51) and last (j 5N) ellipses
with their mirror images. Thusx052x1 ,f052f1 , xN11
52L2xN ,fN1152fN , and, consequently,s(f0 ,f1)
[sM(f1) and s(fN ,fN11)[sM(fN) are defined to rep-
resent the contact distances from the first and last partic
respectively, to the walls.

III. DENSITY PROFILES

A. Isobaric ensemble

The one-particle distribution function in the canonical e
semble for the system of hard ellipses near a hard wa
given by

rL~x,f![(
k51

N

^d~x2xk!d~f2fk!&canonical

5
1

ZN~b,L ! (
k51

N E
2p

p df1

2p
•••E

2p

p dfN

2p

~x2Fk!
k21

~k21!!

3Q~x2Fk!
~L2x2Gk!

N2k

~N2k!!
Q~L2x2Gk!, ~4!

with

Fk5Fk~f1 , . . . ,fk21 ,f!

[(
j 50

k22

s~f j ,f j 11!1s~fk21 ,f!, k52, . . . ,N ~5!

Gk5Gk~f,fk11 , . . . ,fN!

[s~f,fk11!1 (
j 5k11

N

s~f j ,f j 11!, k51, . . . ,N21

~6!

F15GN5sM~f!. ~7!
t,

t

s,

-
is

Note that, in particular,F25sM(f1)1s(f1 ,f) andGN21
5s(f,fN)1sM(fN) because of the interactions with th
walls.

The analytical computation of the density function
more conveniently performed in the isobaric ensemble a

rP~x,f![(
k51

N

^d~x2xk!d~f2fk!& isobaric

5
1

QN~b,P!
E

0

`

dLe2bPLZN~b,L !rL~x,f!

5
1

QN~b,P! (
k51

N E
2p

p df1

2p
•••E

2p

p dfN

2p

3
~x2Fk!

k21

~k21!!
Q~x2Fk!

e2bP~x1Gk!

~bP!N2k11
, ~8!

whereQN(b,P) is the isobaric partition function. Evaluatio
of rP(x,f) as given in Eq.~8! is more easily achieved by
Laplace transforming in the position coordinate. For con
nience, it is better to transform with respect to the varia
y5x2sM(f) ~i.e., the position relative to the minimum
possible distance of the first particle to the wall for a giv
f). Thus

r̃P~s,f![E
0

`

dye2syrP~y,f!

5
1

QN~b,P!(k51

N E
2p

p df1

2p
•••E

2p

p dfN

2p

3
e2~bP1s![Fk2sM~f!]

~bP1s!k

e2bP[sM~f!1Gk]

~bP!N2k11
. ~9!

The Laplace transform can be expressed in a more c
pact form by introducing a transfer-operator formalism

r̃P~s,f!5
1

QN~b,P! (
k51

N
essM~f!

~bP!N2k11~bP1s!k

3vs
Á
•T̂s

k21
•D̂~f!•T̂N2k

•v, ~10!

Here T̂, T̂s , and D̂(f) are integral operators such tha
if Â denotes any one of them, (Â•v)(u)
5*0

p/2(du8/p)A(u,u8)v(u8), whereA(u,u8) is 232 ma-
trix whose elements depend onu and u8 and v is a two-
component column vector withu8-dependent elements
These are given by the expressions

T~u,u8!5S e2bP[sm~u!1sm~u8!] e2bP[sM~u!1sM~u8!]

e2bP[sM~u!1sM~u8!] e2bP[sm~u!1sm~u8!]
D ,

~11!
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D~f;u,u8!5pd~f2u!d~u2u8!S 1 0

0 1D , ~12!

v~u!5e2bPsM~u!S 1

1D . ~13!

The superscriptÁ denotes vectorial transposition ands is
used throughout the text as a subscript or superscript to
dicate the dependence on the variablebP1s instead ofbP
@e.g., the exponential factore2bPsM(u) in Eq. ~13! for v(u)
becomese2(bP1s)sM(u) for vs(u)#.

B. Calculation of QN„b,P…

The isobaric partition function takes the following for
within the transfer matrix formalism:

QN~b,P!5E
0

`

dLe2bPLZN~b,L !

5
1

~bP!N11
vÁ

•T̂N21
•v. ~14!

Diagonalization of the operatorT̂ is carried out in detail in
the Appendix. Its spectral decomposition is given by

T̂5(
i 51

4

l i f i• f i
Á , ~15!

wherel i are the four nonzero eigenvalues ofT̂ and f i their
corresponding eigenvectors. Consequently, the isobaric
tition function can be expressed as

QN~b,P!5
1

~bP!N11(i 51

4

l i
N21~v• f i !

2

5
1

~bP!N11
l1

NU l12I m

l12
I M1I m

2
U H 11OS S l2

l1
D ND J ,

~16!

wherel1 is the eigenvalue with the largest absolute val
See the Appendix for the notation.

C. Calculation of r̃P„s,f…

From Eq.~15! the Laplace transform of the density fun
tion r̃P(s,f) can be written as
n-

r-

.

r̃P~s,f!5
essM~f!

QN~b,P!H (
j 51

2

@vs•D̂~f!• f j #~ f j•v !

3
l j

N21

~bP1s!~bP!N
1 (

k52

N21

(
i , j 51

2

~vs• f i
s!

3@ f i
s
•D̂~f!• f j #~ f j•v !

~l i
s!k21l j

N2k

~bP1s!k~bP!N2k11

1(
i 51

2

~vs• f i
s!@ f i

s
•D̂~f!•v#

~l i
s!N21

~bP1s!N~bP!
J ,

~17!

which, using Eq.~16! for QN(b,P) and taking the thermo-
dynamic limit N→`, becomes

r̃P~s,f!5
essM~f!

11
s

bP
H vs•D̂~f!• f 1

v• f 1
1(

i 51

2
l i

s/l1

11
s

bP
2

l i
s

l1

3
~vs• f i

s!@ f i
s
•D̂~f!• f 1#

v• f 1 J . ~18!

In the derivation we have used that

lim
N→`

S l j

l1
D N21

5d j ,1 , lim
N→`

S l j
sbP

l1~bP1s!
D N21

50 ~s.0!.

~19!

The dot products in Eq.~18! can be readily developed t
give

f i
s
•D̂~f!• f 15

1

Ni
sN1

@ I 3
s e2~bP1s!sm~f!

1~l i
s2I m

s !e2~bP1s!sM~f!#@ I 3e2bPsm~f!

1~l12I m!e2bPsM~f!#, ~20!

vs•D̂~f!• f 15
A2

N1
e2~bP1s!sM~f!@ I 3e2bPsm~f!

1~l12I m!e2bPsM~f!# ~21!

~see the Appendix for the notation!. Substituting into Eq.
~18! and simplifying as appropriate, this results in the e
pression

r̃P~s,f!5
I 3e2bP[sM~f!1sm~f!]1~l12I m!e22bPsM~f!

l1
2~l12I m!S 11

s

bP
2

l1
s

l1
D S 11

s

bP
2

l2
s

l1
D

3Fl1S 11
s

bPD2I m
s 1I 3

s e~bP1s![sM~f!2sm~f!] G .
~22!
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D. Density far from the wall „bulk limit …

The expression~22! provides direct information on the
behavior of the density function in the limitsy→` ~bulk!
and y→0 ~closest distance to the wall! through the Taub-
erian theorems@14,15#. Taking the Laplace transform
r̃P(s,f) to the limit s→0 yields the behavior ofrP(y,f) at
large distances from the hard wall~i.e., y→`) as

r̃P~s,f!;
@ I 3e2bPsm~f!1~l12I m!e2bPsM~f!#2

l1~l12I m!~l12l2!

3
bP

12bPS d ln l1
s

ds D
s50

1

s
1O~1!

5@ f 1~f!#2
bP

12bPS d ln l1
s

ds D
s50

1

s
1O~1!.

~23!

We recall that f 1(f) is the eigenvector of the operato
T̂ corresponding to its largest eigenvaluel1 ~note
that @ f 1(f)#25 f 1

Á(f) f 1(f) does not involve angula
integration….

The ~normalized! angular distributionhbulk(f) and the
average densitŷrbulk& in the bulk limit are given by

rP,bulk~f!5hbulk~f!^rbulk&, ~24!

hbulk~f!5@ f 1~f!#2, ~25!

^rbulk&5
bP

12bPS d ln l1
s

ds D
s50

. ~26!

Equation~26! yields the equation of state of this fluid mode

E. Density at the wall

The determination of the value ofrP(y,f) at the wall
(y50) requires the analysis of the asymptotic behavior
the Laplace transformr̃P(s,f), whens→`. A first step is
the characterization of the asymptotic form of the functio
I j

s , which are defined as~see the Appendix!

I j
s5

1

pE0

p/2

dfe22~bP1s!s j ~f!, j 5m,M ,3, ~27!

where we have introduced the notations3(f)5@sm(f)
1sM(f)#/2. Sinces j (f) are all even functions off with a
single minimum located atf50 @where s j (0)5s/2, the
minor radius of the molecules#, it follows that ~when s
→`)

I j
s;

1

A4p~bP1s!s j9~0!
e2~bP1s!s. ~28!

With these expressions forI j
s one asymptotically obtains
f

s

r̃P~s,f!;
I 3e2bP[sM~f!1sm~f!]1~l12I m!e22bPsM~f!

l1~l12I m!

bP

s

1OS es[sM~f!2sm~f!2s]

s5/2 D . ~29!

The expression~29! will behave in the limit asC/s pro-
vided sM(f)2sm(f)2s<0; otherwise it will diverge ex-
ponentially withs. Note that a Laplace transform of the form
g̃(s)esa corresponds to a functiong(x)Q(x1a). Thus an
inmediate consequence of the exponentially divergent term
that it would allow for the density to become larger than ze
at negative values ofy@5x2sM(f)# @up to s1sm(f)
2sM(f)#. The reason for this anomaly can be found in t
fact that the interaction potential we have introduced ha
discontinuity of the form

lim
f1→02

s~f1 ,f2!Þ lim
f1→01

s~f1 ,f2!, ~30!

and likewise forf2 . The physical meaning of this effect i
that particles are found at distances from the wall sho
than the minimum allowedsM(f).

Thus the proposed model presents a weak point, whic
the price to be paid in order to have a nonseparable mo
simple enough as to be analytically tractable. Neverthel
the dominance of the exponential term in Eq.~29! will only
occur for values ofk ~aspect ratio of the particles, i.e., rat
between the major and minor diameters! above a certain
threshold value. In Sec. V it is shown that with an appropi
selection of the contact functionssm(f) and sM(f) the
range of validity of the model can be extended over a la
interval of aspect ratios.

In turn, for values of the parameters yielding an acce
able physical behavior, i.e.,r̃P(s,f)}1/s in the limit s
→`, the angular profile and the average density at the w
are

rP,wall~f!5hwall~f!^rwall&, ~31!

hwall~f!5
I 3e2bP[sM~f!1sm~f!]1~l12I m!e22bPsM~f!

l1~l12I m!
,

~32!

^rwall&5bP. ~33!

Equation~33! is the well-known sum rule that is fulfilled by
any fluid at contact with a hard wall.

F. Inversion of r̃P„s,f…

Calculation of rP(y,f) from the Laplace inversion o
r̃P(s,f) is a difficult task that must be performed nume
cally. We construct for this purpose the Fourier transform
the density functionr̂P(q,f), which is obtained from the
Laplace transform in a straightforward way through t
simple relationship

r̂P~q,f!5 r̃P~ iq,f!1 r̃P~2 iq,f!. ~34!
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Equation~34! holds for Laplace transforms with no singu
larities, something thatr̃P(s,f) violates @it is singular for
s50; see Eq.~22!#. This divergence expresses thatrP(y,f)
tends to a nonzero value fory→` @Eq. ~24!# and therefore it
is not integrable. However, this difficulty can be easily c
cumvented by applying Eq.~34! to the adsorption function
rP

ads(y,f)5rP(y,f)2rP(`,f)5rP(y,f)2rbulk(f). It
follows that

rP
ads~y,f!5

1

pE0

`

dq cos~qy!r̂P~q,f!

5
2

pE0

`

dq cos~qy!Re@ r̃P~ iq,f!#, ~35!

where Re@j# denotes the real part of the complex argum
j.

The density profilesrP(y,f) are finally obtained by nu-
merically transforming back the expression~35! with an ap-
propiate choice of contact distance functionssM(f) and
sm(f). The results of the computations are presented in S
V, where they are compared with the Monte Carlo simu
tions of the system.

IV. MONTE CARLO SIMULATIONS

In order to test the performance of the analytical mo
we have carried out Monte Carlo simulations for the ha
ellipse system confined in a segment bounded by hard w
The simulations, performed in the isothermal-isobaric
semble (T,P,N constant! @16#, follow the methodology de-
veloped for hard rods in Ref.@17#. Forbidden system con
figurations are those in which any two ellipses overlap.
this way, a Monte Carlo trial consists of moving simult
neously both the positionxi and the orientationf i of the i th
particle. This is done by adding two random quantitiesDx
andDf, uniformly chosen within the intervals (2D,D) and
(2D8,D8), respectively. The resulting configuration is r
jected if it implies an overlap of thei th particle with any of
its nearest neighbors, which is tested according to Vieilla
Baron’s criterion@18#. The displacement variation interva
(D,D8) have been chosen in such a way that the accepta
ratio is around 20–30 %.

After going through trial angular/position displacemen
over all particles once, an attempt to change the length of
segmentL is performed. In this case, the new length is o
tained after multiplying the current length by a fact
exp(xL), wherexL is a random number uniformly distribute
in the interval (2x,x). This change is rejected if an overla
occurs and accepted otherwise with a probability

r[min$1,exp@~N11!xL2bPL~exp~xL!21!#%. ~36!

The value ofx is again chosen such that the length-chan
acceptance ratio is about 20–30 %. The reason for samp
ln L instead ofL is that the domain of the generated rando
chain coincides with the range of acceptable values ofL (L
.0), thus improving the efficiency of the sampling@16,19#.
Furthermore, the changes ofL have been performed keepin
one wall fixed and moving the other wall@17#. This proce-
t
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dure reduces the number of particles needed, as it dire
provides an asymmetric density profile.

Since the analytical model has been worked out in ter
of the displaced position variabley ~see Sec. III A!, a similar
coordinate shift was applied in the Monte Carlo simulatio
yi5xi2s(f i), wheres(f i) is the exact contact distance o
the first particle to the wall, for an orientationf i @this is
given by the expression~39! below#. The shifted positionyi
was stored for the statistical averaging.

The Monte Carlo computation was run with ten particl
after we verified that such a number was sufficient to rep
duce the density profiles in the whole range of interest. T
system was allowed to thermalize with 104 Monte Carlo
steps~one step meaningN Monte Carlo trials plus an attemp
of changing the system length! and the actual averaging wa
computed over 107 additional steps.

V. RESULTS

A. Contact distance functions

Density profiles as a function of the orientation anglef
and the particle-wall distancey have been computed numer
cally from Eq.~35! for several pressures and particle asp
ratios. Two different sets of contact distance functio
sM(f),sm(f) have been chosen in order to test the pres
model. The first series of calculations was carried out w
the expressions~henceforth model 1!

sM~f!5
s

2Fk11

2
2

k21

2
cos~2f!G , ~37!

sm~f!5
s

2
kFk11

2
1

k21

2
cos~2f!G21

,

~38!

wheres and ks are, respectively, the minor and major d
ameters of the particle. The expression~37! for sM(f) is the
same function suggested in previous separable interac
studies@13,11#. The choice of the expression~38! for sm(f)
was made in order to ensure a smaller contact distance
the parallel configuration than for the head-to-head one~see
Fig. 1! while fulfilling the constraintssm(0°)5sM(0°)
5s/2 andsm(90°)5sM(90°)5ks/2. The angular depen
dence ofsM(f) andsm(f) for this model is represented i
Fig. 1~c!.

In order to test the influence of the interaction potential
the angular orientation and on the radial profiles of the p
ticles, a second series of calculations was carried out wi
different pair of contact distance functions~henceforth model
2!

sM~f!5
s

2
@k2sin2~f!1cos2~f!#1/2, ~39!

sm~f!5
s

2
kFk11

2
1

k21

2
cos~2f!G21

.

~40!

The head-to-head contact distancesM(f) in model 2 is
given by the analytical value of the ellipse’s projection
the x axes. As it can be seen in Fig. 1~c!, this choice of
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sM(f) increases the range of the interaction potential w
respect to model 1. On the other hand,sm(f) is kept un-
changed from model 1.

The conditionsM(f)2sm(f)2s<0, required for the
asymptotic convergence of Eq.~29!, is fulfilled in models 1
and 2 for aspect ratios smaller thankmax55.8 and 5.0, re-
spectively. Nevertheless, both models are found to perf
reasonably well fork as large as 10, with the only inconsi
tency of yielding a value of the particle density at the w
about 10% larger than the correct valuerP(y50)5bP.

B. Equation of state

The analytical equation of state for the system follo
from the expression~26!:

1

^rbulk&
5

1

bP
2S d ln l1

s

ds D
s50

. ~41!

Note that the equation of state for the separable interac
model ^rbulk&

215(bP)212^s(f)& @14,13# is obtained
from Eq. ~41! in a straightforward way by just taking th
particular casesM(f)5sm(f)[s(f).

In Fig. 2 we represent the reduced pressureP* [bPs
versus the packing fractionh5^rbulk&s for aspect ratiosk
53 and 5, as obtained from Eq.~41!, within the present
models 1 and 2. The agreement between the analytical
the Monte Carlo results, also shown in the same figure

FIG. 2. Reduced pressureP* [bPs versus packing fraction
h5^rbulk&s for aspect ratiosk53 and 5, as obtained from Eq
~41!. Circles are the Monte Carlo results, whereas the lines are
analytical profiles~model 1, dashed lines; model 2, solid lines!. For
the sake of clarity the curves fork55 are shifted upward by 1.0
units.
h

m

l

n

nd
is

very good. This is not too surprising because, in general,
equation of state does not strongly depend on the detail
the interaction potential.

C. Radial profiles

Radial density profilesrP(y) have been obtained by av
eragingrP(y,f) over all anglesf. Such profiles are more
sensitive than the equation of state to fine details of the
teraction between the particles and thus provide a more
cial test for the analytical model. Figures 3–6 compa
model 1 and model 2 radial profiles with the Monte Ca
ones for several values of the reduced pressure (P* [bPs
50.5, 1, 2, and 4! and the aspect ratio (k52, 3, and 5!.

As it can be seen in these figures, the particles develo
radial layering in the vicinity of the hard wall that becom
progressively more structured as the system pressure
creases. The aspect ratio of the particles, on the other h
does not affect considerably the shape of the radial profi
except for low pressures. The main effect of increasingk is
twofold: a smoothing out of the layered structure ofrP(y,f)
and a shift of the layers toward larger distances from
wall.

The best agreement between the analytical and the M
Carlo profiles is obtained in the limits of high pressure a
small aspect ratio. The same trend was found for the se
rable interaction model@14#. Indeed, fork52 model 1 and

he

FIG. 3. Radial density profiles at constant pressurerP(y)
[^rP(y,f)&f as a function ofy, the position relative to the closes
distance of the first particle to the wall~see the text!, computed for
a reduced pressureP* [bPs50.5 and aspect ratiosk52, 3, and 5.
Circles are the Monte Carlo results, whereas the lines are the
lytical profiles~model 1, dashed lines; model 2, solid lines!. For the
sake of clarity the curves are shifted upward by 0.1 (k53) and 0.2
(k52) units.
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FIG. 4. Same as Fig. 3 for a reduced pressureP* [bPs
51.0. For the sake of clarity the curves are shifted upward by
(k53) and 0.4 (k52) units.

FIG. 5. Same as Fig. 3 for a reduced pressureP* [bPs
52.0. For the sake of clarity the curves are shifted upward by
(k53) and 1.0 (k52) units.
model 2 analytical radial profiles are virtually indistinguis
able from the Monte Carlo curves at all four pressures. F
thermore, at high pressure (P* >2) model 1 displays an ex
cellent performance even for aspect ratios as large ask55,
whereas model 2 yields profiles somewhat smoother~i.e.,
less structured! than its model 1 and Monte Carlo counte
parts, although it still reproduces correctly the position of t
layers in the vicinity of the hard wall.

Interestingly, this trend tends to reverse in the lo
pressure limit and so atP* 50.5 ~Fig. 3! model 2 resembles
overall more closely than model 1 the structure of the Mo
Carlo radial profiles, especially for highk. It is noticed as
well that, at low pressure, model 2 yields better results th
model 1 for the particle density in the bulk limit.

D. Angular profiles

Model 1 and model 2 one-particlef distributions are now
compared to the results of the Monte Carlo computation
to the earlier separable model for the system@14#. Figures
7–10 depict a selection of angular profiles in the two limiti
cases: in the bulk@Eq. ~25!# and at the wall@Eq. ~32!#.

A remarkable contribution of the present nonseparable
teraction model is that it corrects for one of the major inco
sistencies of the separable approximation, namely, that
latter factorizes the radial and angular variables ofrP(y,f),
thus yielding the same angular distribution for the particles
all distances from the wall@14#. As shown in Sec. III, such a
factorization does not take place in the present model du
the nonseparable nature of the contact distance function.
show below that this feature leads to a more realistic desc
tion for the behavior of the hard ellipse system.

2

5

FIG. 6. Same as Fig. 3 for a reduced pressureP* [bPs
54.0. For the sake of clarity the curves are shifted upward by
(k53) and 2.0 (k52) units.
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As it can be seen in the figures, the angular distribution
the particles is broadest~i! at large distance from the har
wall, ~ii ! for small values ofk, and ~iii ! at low pressure.
Thus the weakestf dependence among the curves in Fig
7–10 is found in the bulk distribution atk53, P* 50.5,
where the probability is Gaussian-like with a full width
half maximum of approximately 60° and its value chang
by roughly 50% fromf50° to f590°. On the other hand
the degree of alignment of the particles increases prog
sively ask and P* increase andy diminishes. AtP* 54
~Fig. 10!, the angular profiles at the wall fork53 and 5 have
much smaller full widths at half maximum, of approximate
30° and 15°, respectively.

For small aspect ratios (k52 and 3! both models 1 and 2
yield broadf distributions that do not change appreciab
from the wall to the bulk and are in very good agreem
with the Monte Carlo calculation in all cases. For largerk
values, a stronger dependence on the distance to the w
observed, the angular profile being significantly narrowe
the wall than in the bulk. Furthermore, for large aspect ra
the performance of the two sets of contact distance funct
~models 1 and 2! becomes clearly differentiated, especially
the wall, where the free mobility of the particles is smalle
The model 2 angular distribution at the wall fork55 is in
remarkable agreement with the Monte Carlo values at

FIG. 7. Normalized angular distributions of the particles at
wall hwall(f)[rP(y50,f)/rP(y50) and in the bulkhbulk(f)
[rP(y5`,f)/rP(y5`), as a function of the molecular orienta
tion f, computed for a reduced pressureP* [bPs50.5 and aspect
ratios k52, 3, and 5. Circles and squares are the Monte Ca
distributions at the wall and in the bulk, respectively, whereas
lines are the analytical profiles~model 1, dashed lines; model 2
solid lines; separable model of Ref.@14#, dot-dashed lines!. For the
sake of clarity the curves are shifted upward by 0.4 (k53, wall!,
0.95 (k55, bulk!, and 1.35 (k55, wall! units.
f
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FIG. 8. Same as Fig. 7 for a reduced pressureP* [bPs
51.0. For the sake of clarity the curves are shifted upward by 0
(k53, wall!, 1.5 (k55, bulk!, and 2.25 (k55, wall! units.

FIG. 9. Same as Fig. 7 for a reduced pressureP* [bPs
52.0. For the sake of clarity the curves are shifted upward by
(k53, wall!, 2.0 (k55, bulk!, and 3.0 (k55, wall! units.
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pressures. Model 1, on the other hand, yields a broader
tribution at the wall, which underestimates the degree
alignment of the particles. Finally, models 1 and 2 yie
similar results in the bulk limit in all cases. Both mode
reproduce well the Monte Carlo bulk angular profiles at lo
pressure, whereas they tend to be somewhat broader at
pressure.

It is interesting to notice that thef distribution obtained
within the separable approximation lies in every case v
close to that of model 2 and the Monte Carlo curvesat the
wall. On the other hand, the separable model profile does
properly resemble the angular distribution in the bulk, es
cially for large values ofk. In fact, in Ref.@14# it was shown
that if the separable model calculation is performed fo
smaller aspect ratioke f f'k4/5, the resulting~broader! angu-
lar distribution is in good agreement with the correspond
Monte Carlo distribution in the bulk. It becomes appare
that one of the main advantages of the present nonsepa
treatment is that the coupled angle-radial distributions al
for a study of the correlation between the alignment and
mobility of the particles in a natural way.

VI. CONCLUSIONS

We have presented an analytically solvable nonsepar
interaction model for a one-dimensional fluid of anisotrop
molecules near a hard wall. In spite of the simplicity, t
model provides a very good description for the equation
state of the system and for more sensitive properties, suc
the radial and angular profiles of the particles. In particu
the nonseparable character of the particle interaction po
tial leads to a coupling of the radial and angular parts

FIG. 10. Same as Fig. 7 for a reduced pressureP* [bPs
54.0. For the sake of clarity the curves are shifted upward by
(k53, wall!, 4.0 (k55, bulk!, and 6.0 (k55, wall! units.
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the one-body distribution and hence predicts a higher deg
of alignment for the particles in the vicinity of the hard wa
than at large distances from it, in close agreement with
Monte Carlo results. This feature constitutes a remarka
qualitative improvement with respect to any separable in
action model that necessarily yields the same angular di
bution function at all distances from the wall.

Two different sets of hard core potentials have been tes
in order to probe the sensitivity of the properties of the s
tem to the shape of the interaction between the particles.
first pair of contact-distance functions~model 1! provides a
very accurate description of the particle radial profiles exc
in the limit of low pressure and high aspect ratio where
fluctuation of the particle orientations become large. A s
ond set of contact-distance functions~model 2! reproduces
remarkably well the wall and bulk angular distributions
the particles in all cases, although it leads to a slightly l
satisfactory description of the radial profiles. We conclu
that, with an appropiate selection of the contact dista
functions, the present nonseparable model provides a re
tic analytical description of the properties of a typical on
dimensional hard body system.
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APPENDIX: DIAGONALIZATION OF THE OPERATOR T̂

The eigenvalue equation for the operatorT̂ defined in Eq.
~11! has the form

~ T̂• f !~u!5E
0

p/2 du8

p S A~u!A~u8! B~u!B~u8!

B~u!B~u8! A~u!A~u8!
D S u~u8!

w~u8!
D

5lS u~u!

w~u!
D , ~A1!

with

f ~u!5S u~u!

w~u!
D , A~u![e2bPsm~u!, B~u![e2bPsM~u!.

~A2!

Equation~A1! can be rewritten as

A~u!E
0

p/2 du8

p
A~u8!u~u8!

1B~u!E
0

p/2 du8

p
B~u8!w~u8!5lu~u!,

0
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B~u!E
0

p/2 du8

p
B~u8!u~u8!

1A~u!E
0

p/2 du8

p
A~u8!w~u8!5lw~u!. ~A3!

ProvidedlÞ0, it follows that u(u)5aA(u)1bB(u) and
w(u)5a8A(u)1b8B(u) and therefore Eq.~A3! turns into

S I m I 3 0 0

0 0 I 3 I M

0 0 I m I 3

I 3 I M 0 0

D S a

b

a8

b8

D 5lS a

b

a8

b8

D , ~A4!

where the following notation has been introduced, which
used throughout the present work:

I m5E
0

p/2 df

p
e22bPsm~f!, ~A5!

I M5E
0

p/2 df

p
e22bPsM~f!, ~A6!

I 35E
0

p/2 df

p
e2bP[sm~f!1sM~f!] .

~A7!

Equation~A4! has four~nonzero! eigenvalues

l1,25
I m1I M

2
6F S I m2I M

2 D 2

1I 3
2 G1/2

, ~A8!

l3,45
I m2I M

2
6F S I m1I M

2 D 2

2I 3
2 G1/2

. ~A9!

The eigenvaluesl1,2,3,4have the following algebraic proper
ties ~useful for the derivation of the expressions presente
cs

m

s

in

this work!: ~i! l1.l2,3,4; ~ii ! qil i(l i2I m)5I 3
2 1I M(l i

2I m), with q15q2511 and q25q3521; ~iii ! l1l2

52l3l45I mI M2I 3
2 >0; ~iv! (l12I m)(l22I m)

52(l32I m)(l42I m)52I 3
2 ; ~v! the eigenvector corre

sponding to the eigenvaluel i is

f i~f!5
1

Ni
$I 3e2bPsm~f!1~l i2I m!e2bPsM~f!%S 1

A2

qi

A2

D ,

where Ni5ul i(l i2I m)(2l i2qiI M2I m)u1/2 is a normaliza-
tion constant;~vi! the eigenvectors are orthonormal:f i• f j

5*0
p/2(df/p) f i

Á(f) f j (f)5d i , j ; and ~vii ! the dot products
v• f i5*0

p/2(df/p)vÁ(f) f i(f) can be expressed as

v• f 1,25
A2

N1,2
l1,2~l1,22I m!

5e1,2Ul1,2~l1,22I m!

l1,22
I M1I m

2
U1/2

~e1511, e2521!,

~A10!

v• f 3,450. ~A11!

Equation~A3! has also the solutionl050. In this case,
any two functionsu(u),w(u), belonging to the space or
thogonal to the one spanned by the functionsA(u) andB(u)
will be a solution of Eq.~A3! with l050. Note that, al-
though the subspace spanned byl050 is of infinite dimen-
sion, its contribution to the spectral decomposition is iden
cally zero.
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