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Analytical solution to a nonseparable interaction model for a one-dimensional fluid of anisotropic
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We introduce a one-dimensional fluid model of anisotropic molecules near a hard wall having a nonsepa-
rable interaction and yet being analytically solvable. We compute radial and angular profiles of the particles as
well as the equation of state of the system. The model is worked out for two different hard core potentials and
the results are compared to a Monte Carlo simulation. We find that the model provides a very accurate
description of the system except in the limit of low pressure and large particle anisotropy where the fluctuation
of the particle orientations become too large. In particular, the nonseparable character of the particle interaction
potential leads to a coupling of the radial and angular parts of the one-body distribution that allows for a study
of the correlation between the alignment of the particles and their distance to the hard wall. This feature
constitutes a remarkable qualitative improvement with respect to any separable interaction model in which the
radial and angular variables are necessarily decoupBiD63-651X99)02602-1

PACS numbg(s): 61.30.Cz, 61.30.Gd, 61.20.Ja, 05.70.Ce

I. INTRODUCTION ticomponent system of hard particles with a next-neighbor
interaction[1]. An extension to include attractions is the
“Theoretical many-body physics ... is an art. The artfluid of adhesive hard rods, whose grand potential has been

. is that of constructing simple solvable relevant modelspbtained as a functional of the density profi. Associat-
whose solutions are simply expressed.” With these worddng hard rods have also been considered as a model of poly-
Percug 1] resumes a whole current of thought in physics thatmerization[10].
bases the understanding of physical systems upon the exact Fluids of anisotropic particles have also received attention
solution to simple, idealized models. One of these models i§ the context of solvable models. Basically there are two
the keystone of statistical mechanics: the Ising model, whos@ays of introducing orientational degrees of freedom in one
exact solution is known in one and two dimensions. Thisdimension(where, strictly speaking, rotations are excluded
model has given rise to a whole bunch of exactly solvableFither we can restrict the center of mass of, say, ellipses to
lattice models of different physical systefis. '?V on a stra|ght line but allow th'em to mterqct as tvyo-

The physics of fluids has also benefited from this “art.” dimensional objects or we can consider only their projections

The fluid counterpart of the Ising model is the hard sphen—;?n the line and let particles interact through these projec-
fluid, which in one dimension is called the hard rod fI[. ions. The former system captures an essential feature of flu-

. ids of anisotropic particles, namely, that positions and orien-

AIthqugh known fqr more .than a century, this mod<_a| .hastations are strongly coupled and hence it is difficult to study
provided relevant information only recently. The original [ 1}. the |atter is far simpler because rotations and orienta-
works of Lord Rayleigh[3] and Tonks[4] provided the  iong can be separated, which permits one to solve it exactly
equation of state of this fluid. The distribution function of the [12,13. In spite of being separable, this model reveals im-
homogeneous hard rod model was obtained half a centuryotant information on the structure of the direct correlation
ago[5] and its direct correlation function did not appear until fynction; for instance, it explicitly shows that conformal ap-
the 1970s[6]. However, perhaps the highest achievementyroximations will necessarily fafl13].
with this model is Percus’s obtention of ixactHelmholtz The separable model can be used as an approximation to
free-energy density function@f]. This solution has proved the nonseparable one. Their respective equations of state are
crucial in the understanding of density functional the[8},  essentially indistinguishable 4] and the adsorption profiles
one of the most powerful analytical tools we currently havenear a wall are very similar at high pressure or low anisot-
at our disposal to obtain the phase behavior of fluids. ropy [14]. However, out of this regime, the separable model

The original hard rod model has been extended in differ-overestimates the orientation in the bulk and this leads to
ent directions. A closely related model in the way towardssignificant deviations of the adsorption profiles. In this re-
two-dimensional fluids is the system of parallel hard squaregime nonseparability has observable effects. Truly nonsepa-
in a narrow channdl9], which can be generalized to a mul- rable models are difficult to solve analyticall¥1]. Thus the
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aim of this work is to introduce a highly idealized model in a) c,,(9) + c,(9) b) c,.(0) + c(9)
which nonseparability is implemented in the simplest pos-
sible way and yet the model remains analytically tractable.
With the help of this model we will show that despite its
implicity it accounts for the differences in the angular pro-
files far and close to a hard wall and that this corrects for the
discrepancies in the adsorption profiles.

The paper is organized as follows. In Sec. Il the nonsepa-
rable interaction model for the one-dimensional fluid is pre-
sented. In Sec. Ill the analytical expressions for the particle
radial and angular density profiles are derived and their
asymptotic behavior is discussed. In Sec. IV the Monte Carlo c)
simulation method for the title system is described. In Sec. V. X0\ T T T T T
the analytical radial and angular density profiles from the Eo\ e
present model are worked out for two different interaction |
potentials and the results are compared to the Monte Carlo
profiles and to the prediction of a separable interaction model
reported previously. The results are summarized in Sec. VI
and final conclusions are drawn.

1. MODEL

;
\ ‘..l "‘ I’

Y g [9) (q))
(Y i m

Let us consider a system bffreely rotating hard ellipses \ g
N i (Models 1 and 2)

with their centers of mass restricted to move along a segment /

of length L. The ellipses interact by means of a nearest- o2l v o N

neighbor hard core pair potential of the form -90 -60 -30 0 30 60 90
Orientation Angle ¢ (degrees)

Contact Distance c,(9), _(¢)
=z
o
s

0 if [x=x'|>0(h,¢")

O(x=x"lid ¢ =) Ix=x'|<a(¢,¢"),

1) FIG. 1. (a) and(b) Diagrams illustrating the separation between
the centers of two neighboring particles at contact for (he
“head-to-head” configuration [¢¢’'<0,0(¢,¢')=0on(P)

whereo(¢,¢") represents the contact distance between twot oy (¢’)] and (b) “parallel” configuration [ ¢¢'>0,0(h,¢')

neighboring hard ellipses with orientatios and ¢’, re-  =on(¢)+on(¢')]. (c) Dependence on the orientation anglef
spectively. the contact distance functiors, (¢) ando,(¢) used to construct

Only a limited number of exact results can be obtained fotthe two model potentialémodels 1 and Rfor the computation of
this general problenil1]. On the other hand, it has been the analytical density profilefsee expression$7)—(40)].

shown that the partition function and the properties of this

system can be derived analytically if the contact distance is

assumed to be separable(¢,¢’')=0c(d)+o(d'). Rea- o) +an(d') if pd'>0
sonable results are obtained within this approximation for the ()= o , 2)
equation of state as well as the radial and angular density ’ om(P)tou(e’) if ¢p¢'<0,

distributions[13,14].

One of the main drawbacks of assuming a separable con-
tact distance is that it leads to a full decoupling between the . .
angular and radial profiles of the particles. Thus the samWhere om(¢) and ayy(¢) are two different functions that

angular distribution is obtained at all distances from the har efine the effec'uvg contact radius of eac_h eII|p§e. In.th|s
wall. This prediction is in contradiction with the results of way, the contact dlstgnce petweep twq ne|ghpor|ng eliipses
the Monte Carlo simulatiotand common sengéor the sys- also _depends on their relative quentat|on. This is probably
tem, where a higher degree of alignméhe., a narrower the simplest nonseparable functional form i, ¢') that
angular density profile aroungd=0°) is obtained in the C€an be considered, its physical interpretation being that a
proximity of the hard wall than at large distances from it different type of contact function applies whether both el-
(bulk limit) as a consequence of the larger concentration ofiPses are in a “head-to-head” configurati¢gp ¢’ <0, Fig.
particles[14]. 1(a)] or in a “parallel” configuration[ ¢¢’ >0, Fig. Ab)].
In an attempt to correct for these limitations, in the This is in contrast to any separable interaction model, where
present work we propose a simple nonseparable model fap and ¢’ are fully decoupled and thew(¢,¢')=0
the hard core interaction whose properties can still be detef-— ¢,¢')=o(¢,— ¢").
mined analytically. It will be shown that such a model intro-  The canonical partition function for this system is, as in
duces a realistic coupling between the equilibrium angulathe separable modgl4], that of a system of hard rods with
and radial density profiles. variable (@-dependentlengths, averaged over all possible
We assume a nonseparable contact distance of the fornorientations, i.e.,
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" dgy dey Note that, in particularF,= oy ($1)+ o(P1,¢) andGy_,
INBL=| S f f dxg- - j dxy =0($,dn) +om(dy) because of the interactions with the
o7 walls.
N The analytical computation of the density function is
xexp{ —ﬂz (I)(|xj—xj+1|;¢,¢’)J more conveniently performed in the isobaric ensemble as
[l [ \
“2m 2w N Pe(X,$)= 2, (8(x=x0) (= i) isabari
N N
—J_E::O (¢ ,¢j+1)) QN(ﬁ = f dLe APLZ(B,L)pL(X, d)
. 1 dé dé
XO|L—> o(¢;, b )). 3) - J” 1 ..f”_N
1=0 ! Jrt QN(B:P) kzl —ar 277 777277
Here x; and ¢; denote, respectively, the position and the (x—F)k 1 e BP(x+ Gy
orientation of thej th particle, 3= (kgT) ! is the inverse of X“(_—l),@)(X—fk)W, 8)

the absolute temperature in units of the Boltzmann constant,
and O (x) is the Heaviside step function, equal to Ixif0
and 0 ifx<0. whereQy (B, P) is the isobaric partition function. Evaluation
The boundary conditions imposed by the hard walls abf p,(x,¢) as given in Eq(8) is more easily achieved by
both ends of the segment is implemented in B).as the |aplace transforming in the position coordinate. For conve-
interaction of the first (=1) and last [=N) ellipses nience, it is better to transform with respect to the variable
with their mirror images. Thugo=—X1,0=—¢1, Xn+1  y=x—oy(¢) (i.e., the position relative to the minimum
=2L—Xn,¢n+1=—én, and, consequently,o(¢o,#1)  possible distance of the first particle to the wall for a given

=ow(¢1) and o(dn,dn+1)=om(¢y) are defined to rep- ). Thus
resent the contact distances from the first and last particles,

respectively, to the walls.

(s, )= f dye pp(y. &)
IIl. DENSITY PROFILES 0

A. Isobaric ensemble 1 N fw doy fﬂ doy
The one-particle distribution function in the canonical en- S QuBPE ) s2m ) s 2w
semble for the system of hard ellipses near a hard wall is

given by e~ (BP+S)[Fy=om(d)] o= BPlom(4)+Gd

(BP+39)" gy

N
PL(Xad’)EkE::l <5(X_Xk) o(p— ¢k)>canonical
The Laplace transform can be expressed in a more com-
1 N J‘ﬂ' dey jw doy (x—F)k 1t pact form by introducing a transfer-operator formalism

ZuBLE ) s2m ) 2w (k=)
N Sop ()
_ ~ e>“M
(L—X_gk)N k S =
X0~ F)—Nor O XG0, @ pr(s. )= 5 5p) 2, (BP)N K1 BP+ 5
with Xvd - TELA(g)- TN X0, (10)
FEFd b1 be109) Here T, T, and A(¢) are integral operators such that,
k2 if A denotes any one of them, A(v)(6)
EJZO o(¢, b Tolb-1,8), k=2,...N ) —172dg'/7)A(6,0')0(8'), where A(6,0') is 2X2 ma-
trix whose elements depend ¢hand ' andv is a two-
- component column vector with¥’-dependent elements.
G=Gd bbb These are given by the expressions
N
— + Cbiy), k=1,...N-1
(& Pice) ;:%1 (9 4j+1) e BPlom( D+ on(6)] g BPLowm(6)+an(6")]
(6) T(0,0")= :
e BPlom(D) +oy(0)] o= BPLom(0)+ ()]

Fi=Gn=ou(d). (7) (11
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1 0 _ esom(4) 2
A@0.00=molg= 000000 o 1)’ 12 Ge(sd)=g | 2 0w A0 11(10)
N =
NS é
( s'fis)
U(g)zeﬁPaM(e)<i>_ (13 (BP+s)(BP)N k=2 ij=1 v

(D) I
(BP+9)K (PN

X[5-A(g)-F1(f;-v)

The superscriptT denotes vectorial transposition asds

used throughout the text as a subscript or superscript to in- Sres 7 (AN
dicate the dependence on the variaBR+ s instead of P +Z’1 (vs TOLT-A(9) 0] (BP+3s)N(BP) '
[e.g., the exponential fact@ #Pm(%) in Eq. (13) for v(6)
becomese™ (AP +97m(9) for y(6)]. (17)
which, using Eq.(16) for Qy(3,P) and taking the thermo-
B. Calculation of Qy(8,P) dynamic limitN— -, becomes
The isobaric partition function takes the following form esom(®) A(g)-f 2 AN,
within the transfer matrix formalism: pp(S,d)= : Ly ' xS
v-Tq i=1 S
. . 1+ B_P 1+ ,B_P — )\_1
Qn(B,P)= . dLe """Zy(B,L)
(vg- T[S A(gp)-f
L « s i [v|‘fl ¢ l] (18)
=——p . TN 1.y, 14
(,8P)N+l ( )
In the derivation we have used that
Diagonalization of the operatdF is carried out in detail in N-1 \Sgp \N-1
the Appendix. Its spectral decomposition is given by lim ( ) =6, lim ( P =0 (s>0).
Nesoo\ N1 I Le\N(BP+s)
y 19
T= ifi-fi e dot products in Eq18) can be readily developed to
T=> Nfy-f] (15) The d d Eq48) can be readily developed
=1 give
where\; are the four nonzero eigenvaluesofand f; their 5. A(¢)- 1= [15e (BPFSom(4)
corresponding eigenvectors. Consequently, the isobaric par- i1
tition function can be expressed as +(\S=15) e (BPESIom(®[| e~ APom($)
+ (N Ip)e APomld], (20)
4
Qn(B,P)= 2 A1)
N (,BP)N+ = Ug.A(d,).fl:N_\/Ee(BP+S)(TM(</>)[|XeBP"’m(¢)
1
_ N
S S ] P Sl B PO R ) )] F 0= ) AP ()] (21)
(l[gp)N+l \ _||v|+|m N
! 2 (see the Appendix for the notatipnSubstituting into Eq.
(16) (18) and simplifying as appropriate, this results in the ex-

pression

| e BPLom( D+ on(d) 1 (), —| )e~2BPom(d)

where\ ; is the eigenvalue with the largest absolute value.~ Do(S, ) =

See the Appendix for the notation. N2(h— s )\i 1+ s A3
C. Calculation of pp(s, @) e i —Iﬁ1+ |§<e(IBP+S)[‘TM(¢)_0m(¢)]}_
From Eq.(15) the Laplace transform of the density func- BP

tion pp(s, ) can be written as (22)
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D. Density far from the wall (bulk limit )

The expression(22) provides direct information on the pp(s,b)~

behavior of the density function in the limigg—o (bulk)
andy—0 (closest distance to the walthrough the Taub-

erian theorems[14,15. Taking the Laplace transform

Zp(s, ¢) to the limits— 0 yields the behavior gbp(y, ) at
large distances from the hard wdlle., y—x) as

[| Xefﬁpom(‘f’)_k()\l_|m)efﬁng(¢’)]2
N(Ni—Tm)(Ng—Np)

ki 1+O(1)

L din\g s
~BPl—4s -
s=0

P 1
dmxa s TOM.
s=0

ds

;P(S! ¢)~

X

=[fa()]?

1—EP<

(23

We recall thatf,(¢) is the eigenvector of the operator

T corresponding to its largest eigenvalue; (note
that [f,(#)]°=f, (¢)f1(¢) does not involve angular
integration).

The (normalized angular distributionhy,, (¢) and the
average densitypp in the bulk limit are given by

Pp.buik @) =hpu( &) Pouik) (24
hpu( @) =[f1(#) 12, (25
_ BP
B ds 0

Equation(26) yields the equation of state of this fluid model.

E. Density at the wall
The determination of the value gfp(y,¢) at the wall

(y=0) requires the analysis of the asymptotic behavior of Nwai( )=

the Laplace transformp(s, ¢), whens—o. A first step is
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| e BPLom(Don(d] (N, —1 )e~28Pom(9) gp

AN(M— 1) S
eSlom()—o(9) 0]
+0 =7 : (29

The expressiori29) will behave in the limit asC/s pro-
vided oy (@) — o () — <0, otherwise it will diverge ex-
ponentially withs. Note that a Laplace transform of the form

g(s)e%? corresponds to a functiog(x)®(x+a). Thus an
inmediate consequence of the exponentially divergent term is
that it would allow for the density to become larger than zero
at negative values off[ =x—ou(#)] [up t0 o+ om(P)
—ou(¢)]. The reason for this anomaly can be found in the
fact that the interaction potential we have introduced has a
discontinuity of the form

lim o(dq,02)# lim o(dhq,02), (30

$1—0" ¢$1—0"

and likewise for¢,. The physical meaning of this effect is
that particles are found at distances from the wall shorter
than the minimum allowedr;( ¢).

Thus the proposed model presents a weak point, which is
the price to be paid in order to have a nonseparable model
simple enough as to be analytically tractable. Nevertheless,
the dominance of the exponential term in E29) will only
occur for values ofc (aspect ratio of the particles, i.e., ratio
between the major and minor diamejeebove a certain
threshold value. In Sec. V it is shown that with an appropiate
selection of the contact functions,,(¢) and oy (@) the
range of validity of the model can be extended over a large
interval of aspect ratios.

In turn, for values of the parameters yielding an accept-

able physical behavior, i.eﬁp(s, ¢)ocl/s in the limit s
—oo, the angular profile and the average density at the wall
are

Pp,wall ®) = Nwai( @) pwan)» (31

| e APlom(®) +om(d] 1 (N, — | )e~2BPom(9)

AN(N—Ty) ’
(32

the characterization of the asymptotic form of the functions

I7, which are defined agsee the Appendix
1 (=2
lT:;fo dd)e*Z(BPJrS)U‘j((b)’ j:vaaxa (27)

where we have introduced the notati@n (@) =[om(®)
+ou(¢)1/2. Sinceo;(¢) are all even functions op with a
single minimum located atp=0 [where ¢{(0)=0/2, the
minor radius of the moleculg¢sit follows that (when s
—0)

s 1 e—(ﬂP+s)a_

[S~
' Jam(BP+s)d](0)

(28)

With these expressions fd)f one asymptotically obtains

(Pwan)=BP. (33

Equation(33) is the well-known sum rule that is fulfilled by
any fluid at contact with a hard wall.

F. Inversion of pp(s, @)

Calculation of pp(y,®) from the Laplace inversion of
Bp(s, ¢) is a difficult task that must be performed numeri-
cally. We construct for this purpose the Fourier transform of
the density functionpp(q, ), which is obtained from the
Laplace transform in a straightforward way through the
simple relationship

pp(0,0)=pp(i0,)+pp(—id, ¢). (34)
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Equation(34) holds for Laplace transforms with no singu- dure reduces the number of particles needed, as it directly

larities, something thapp(s,¢) violates[it is singular for ~ Provides an asymmetric density profile.

s=0; see Eq(22)]. This divergence expresses tha(y, ¢) Since the analytical model has been worked out in terms
tends to a nonzero value fyHoo [Eq (24)] and therefore it of the displaced pOSition Val’iabj,e(see Sec. lll A, a similar

is not integrable. However, this difficulty can be easily cir- coordinate shift was applied in the Monte Carlo simulation:
cumvented by applying Eq34) to the adsorption function Yi=Xi— o (¢;), whereo(¢) is the exact contact distance of

gy )= b)) — pp(©,d)= b)) — _ it  the first particle to the wall, for an orientatiogy; [this is
fomz\y\,ft)ha{) e @)= ppl(. 8)=pely. )~ prud 9) given by the expressiof89) below]. The shifted positiory;

was stored for the statistical averaging.
1 (= . The Monte Carlo computation was run with ten particles
PNy, )= ;j dqgcogqy)pp(d,¢) after we verifie_d that _such a number was suffici_ent to repro-
0 duce the density profiles in the whole range of interest. The
2 (o system was allowed to thermalize with “.®0onte Carlo
= —f dgcogqy)Regpp(iq,¢)], (35  stepsione step meaniny Monte Carlo trials plus an attempt
mJo of changing the system lengthnd the actual averaging was

computed over 10additional steps.
where R§¢&] denotes the real part of the complex argument

3

: _ _ _ . V. RESULTS
The density profilepp(y, ) are finally obtained by nu- _ _
merically transforming back the expressi@¥5) with an ap- A. Contact distance functions
propiate choice of contact distance functiomg($) and Density profiles as a function of the orientation angle

om(¢). The results of the computations are presented in Segng the particle-wall distangehave been computed numeri-
V, where they are compared with the Monte Carlo simula-ca|ly from Eq.(35) for several pressures and particle aspect

tions of the system. ratios. Two different sets of contact distance functions
om(d),om(¢) have been chosen in order to test the present
IV. MONTE CARLO SIMULATIONS model. The first series of calculations was carried out with

_ the expressionghenceforth model )1
In order to test the performance of the analytical model

we have carried out Monte Carlo simulations for the hard o kt1l k-1

ellipse system confined in a segment bounded by hard walls. om(P)= 2 T—Tcos&d))}, (37
The simulations, performed in the isothermal-isobaric en-

semble T,P,N constank[16], follow the methodology de- o [k+1 k-1 -1
veloped for hard rods in Refl17]. Forbidden system con- on(d)= 5K + 70032@} ,
figurations are those in which any two ellipses overlap. In 39)

this way, a Monte Carlo trial consists of moving simulta-
neously both the positior; and the orientatio); of theith  whereo and ko are, respectively, the minor and major di-
particle. This is done by adding two random quantit®s  ameters of the particle. The expressi&) for oy () is the
andA ¢, uniformly chosen within the intervals{A,A) and  same function suggested in previous separable interaction
(—A',A"), respectively. The resulting configuration is re- studieg13,11]. The choice of the expressi¢88) for o( )
jected if it implies an overlap of thith particle with any of  \was made in order to ensure a smaller contact distance for
its nearest neighbors, which is tested according to Vieillardthe parallel configuration than for the head-to-head @ee
Baron’s criterion[18]. The displacement variation intervals Fig. 1) while fulfiling the constraintso,(0°)= oy (0°)
(A,A") have been chosen in such a way that the acceptance ;/2 and o(90°)=0(90°)= k2. The angular depen-
ratio is around 20-30 %. dence ofoy(¢) ando,() for this model is represented in
After going through trial angular/position displacementsfig. 1(c).
over all particles once, an attempt to change the length of the | order to test the influence of the interaction potential on
segment_ is performed. In this case, the new length is ob-the angular orientation and on the radial profiles of the par-
tained after multiplying the current length by a factor ticles, a second series of calculations was carried out with a

exp(x.), wherey_is a random number uniformly distributed different pair of contact distance functiotfeenceforth model
in the interval (- x, x). This change is rejected if an overlap 2)

occurs and accepted otherwise with a probability

_9 2 12
r=min{Lexg (N+1)x, - BPL(expx,)~ D]} (36) ou(g) = [x*si(4) +cos($)I (39
The value ofy is again chosen such that the length-change o |k+1 k-1 -1
acceptance ratio is about 20—-30 %. The reason for sampling Om(})= 5 K| —5—+ —5Cc0424)
InL instead ofL is that the domain of the generated random (40)

chain coincides with the range of acceptable valuek @f

>0), thus improving the efficiency of the sampliit6,19.  The head-to-head contact distanag (¢) in model 2 is
Furthermore, the changes bfhave been performed keeping given by the analytical value of the ellipse’s projection on
one wall fixed and moving the other wall7]. This proce- the x axes. As it can be seen in Fig(cl, this choice of
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FIG. 2. Reduced pressufie*=8Pg versus packing fraction
n={ppuyo for aspect ratiosk=3 and 5, as obtained from Eq. FIG. 3. Radial density profiles at constant presspegy)
(42). Circles are the Monte Carlo results, whereas the lines are the{pr(Y.¢)) as a function o, the position relative to the closest
analytical profilesmodel 1, dashed lines; model 2, solid linggor ~ distance of the first particle to the wallee the teyt computed for

the sake of clarity the curves for=5 are shifted upward by 1.0 areduced pressuf* =pgP¢=0.5 and aspect ratios=2, 3, and 5.
units. Circles are the Monte Carlo results, whereas the lines are the ana-

lytical profiles(model 1, dashed lines; model 2, solid lineSor the

. . . . ... sake of clarity the curves are shifted upward by 0«x@) and 0.2
ou(®) increases the range of the interaction potential W|th(K:2) units.

respect to model 1. On the other harg,(¢) is kept un-
changed from model 1.

The conditionoy (@) — on($) —o<0, required for the
asymptotic convergence of E(R9), is fulfilled in models 1
and 2 for aspect ratios smaller thaf,,,=5.8 and 5.0, re-
spectively. Nevertheless, both models are found to perform

very good. This is not too surprising because, in general, the
equation of state does not strongly depend on the details of
the interaction potential.

reasonably well for as large as 10, with the only inconsis- C. Radial profiles
tency of yielding a value of the particle density at the wall Radial density profilepp(y) have been obtained by av-
about 10% larger than the correct valpg(y =0)=SP. eragingpp(y,#) over all anglesp. Such profiles are more

sensitive than the equation of state to fine details of the in-
teraction between the particles and thus provide a more cru-
cial test for the analytical model. Figures 3—6 compare
The analytical equation of state for the system followsmodel 1 and model 2 radial profiles with the Monte Carlo

B. Equation of state

from the expressiofi26): ones for several values of the reduced pressieBPo
s =0.5, 1, 2, and #and the aspect ratiok=2, 3, and 5.
1 :i_ ( din }‘1) (41) As it can be seen in these figures, the particles develop a
{(ppuy BP ds |/, radial layering in the vicinity of the hard wall that becomes

progressively more structured as the system pressure in-
creases. The aspect ratio of the particles, on the other hand,
Note that the equation of state for the separable interactiodoes not affect considerably the shape of the radial profiles
model (ppu) " 1=(BP) 1—(o(¢#)) [14,13 is obtained except for low pressures. The main effect of increasinig
from Eqg. (41) in a straightforward way by just taking the twofold: a smoothing out of the layered structurepgfy, ¢)

particular casery (@) =on(d)=a(d). and a shift of the layers toward larger distances from the
In Fig. 2 we represent the reduced pressBfe=BPc  wall.
versus the packing fraction=(pp,) o for aspect ratiosc The best agreement between the analytical and the Monte

=3 and 5, as obtained from E@41), within the present Carlo profiles is obtained in the limits of high pressure and
models 1 and 2. The agreement between the analytical arsinall aspect ratio. The same trend was found for the sepa-
the Monte Carlo results, also shown in the same figure, igsable interaction moddl14]. Indeed, fork=2 model 1 and
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ool .

FIG. 4. Same as Fig. 3 for a reduced pressBre=BPo

Pa(Y)

10

FIG. 6. Same as Fig. 3 for a reduced pressBre=8Pco
=4.0. For the sake of clarity the curves are shifted upward by 1.0

=1.0. For the sake of clarity the curves are shifted upward by 0.2(K23) and 2.0 f=2) units

(k=3) and 0.4 («=2) units.

00 [ 1 1 . 1 " 1 1 1

FIG. 5. Same as Fig. 3 for a reduced pressBre=BPo

model 2 analytical radial profiles are virtually indistinguish-
able from the Monte Carlo curves at all four pressures. Fur-
thermore, at high pressur®t =2) model 1 displays an ex-
cellent performance even for aspect ratios as large=as,
whereas model 2 yields profiles somewhat smoother,
less structuredthan its model 1 and Monte Carlo counter-
parts, although it still reproduces correctly the position of the
layers in the vicinity of the hard wall.

Interestingly, this trend tends to reverse in the low-
pressure limit and so &* =0.5 (Fig. 3) model 2 resembles
overall more closely than model 1 the structure of the Monte
Carlo radial profiles, especially for highk. It is noticed as
well that, at low pressure, model 2 yields better results than
model 1 for the particle density in the bulk limit.

D. Angular profiles

Model 1 and model 2 one-particlg distributions are now
compared to the results of the Monte Carlo computation and
to the earlier separable model for the syste]. Figures
7-10 depict a selection of angular profiles in the two limiting
cases: in the bulkEq. (25)] and at the wal[Eq. (32)].

A remarkable contribution of the present nonseparable in-
teraction model is that it corrects for one of the major incon-
sistencies of the separable approximation, namely, that the
latter factorizes the radial and angular variablep gfy, ¢),
thus yielding the same angular distribution for the particles at
all distances from the waltl4]. As shown in Sec. lll, such a
factorization does not take place in the present model due to
the nonseparable nature of the contact distance function. We

=2.0. For the sake of clarity the curves are shifted upward by 0.5how below that this feature leads to a more realistic descrip-

(k=3) and 1.0 ¢=2) units.

tion for the behavior of the hard ellipse system.
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hBqu (¢).h wall 4

-50 0 50 -90 -60 -30 0 30 60 90
¢ (degrees) ¢ (degrees)

FIG. 7. Normalized angular distributions of the particles at the FIG. 8. Same as Fig. 7 for a reduced pressBe=gPo
wall hya(P)=pp(y=0,0)/pp(y=0) and in the bulkhyud¢) =1.0. For the sake of clarity the curves are shifted upward by 0.75
=pp(y=2,$)/pp(y=), as a function of the molecular orienta- («=3, wall), 1.5 («=5, bulk), and 2.25 (=5, wall) units.
tion ¢, computed for a reduced press#t= gPo=0.5 and aspect
ratios k=2, 3, and 5. Circles and squares are the Monte Carlo
distributions at the wall and in the bulk, respectively, whereas the
lines are the analytical profilegnodel 1, dashed lines; model 2,
solid lines; separable model of R¢L4], dot-dashed lingsFor the S ]
sake of clarity the curves are shifted upward by O4=@, wall),
0.95 (k=5, bulk), and 1.35 (=5, wall) units.

As it can be seen in the figures, the angular distribution of
the particles is broadest) at large distance from the hard
wall, (i) for small values ofx, and (iii) at low pressure.
Thus the weakes$ dependence among the curves in Figs.
7-10 is found in the bulk distribution at=3, P*=0.5,
where the probability is Gaussian-like with a full width at
half maximum of approximately 60° and its value changes
by roughly 50% from¢=0° to ¢=90°. On the other hand,
the degree of alignment of the particles increases progres-
sively asx and P* increase and/ diminishes. AtP* =4
(Fig. 10, the angular profiles at the wall far=3 and 5 have
much smaller full widths at half maximum, of approximately
30° and 15°, respectively.

For small aspect ratiosx(=2 and 3 both models 1 and 2
yield broad ¢ distributions that do not change appreciably
from the wall to the bulk and are in very good agreement
with the Monte Carlo calculation in all cases. For larger
values, a stronger dependence on the distance to the wall is
observed, the angular profile being significantly narrower at EEE 5
the wall than in the bulk. Furthermore, for large aspect ratios -90 -680 -30 0 30 60 90
the performance of the two sets of contact distance functions ¢ (degrees)

(models 1 and Pbecomes clearly differentiated, especially at
the wall, where the free mobility of the particles is smallest. FIG. 9. Same as Fig. 7 for a reduced pressie=BPo
The model 2 angular distribution at the wall fer=5 is in  =2.0. For the sake of clarity the curves are shifted upward by 1.0
remarkable agreement with the Monte Carlo values at al{x=3, wall), 2.0 («=5, bulk), and 3.0 =5, wall) units.

h Bulk(¢) ! I”|Wall(<'))
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L B B B the one-body distribution and hence predicts a higher degree
of alignment for the particles in the vicinity of the hard wall
than at large distances from it, in close agreement with the
Monte Carlo results. This feature constitutes a remarkable
qualitative improvement with respect to any separable inter-
action model that necessarily yields the same angular distri-
bution function at all distances from the wall.

Two different sets of hard core potentials have been tested
in order to probe the sensitivity of the properties of the sys-
tem to the shape of the interaction between the particles. The
first pair of contact-distance functiorigrodel ) provides a
very accurate description of the particle radial profiles except
in the limit of low pressure and high aspect ratio where the
fluctuation of the particle orientations become large. A sec-
ond set of contact-distance functiofmodel 2 reproduces
remarkably well the wall and bulk angular distributions of
the particles in all cases, although it leads to a slightly less
satisfactory description of the radial profiles. We conclude
that, with an appropiate selection of the contact distance
functions, the present nonseparable model provides a realis-
tic analytical description of the properties of a typical one-
dimensional hard body system.

hBqu(q))’ hWaII((p)
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alignment of the particles. Finally, models 1 and 2 yield
similar results in the bulk limit in all cases. Both models -
reproduce well the Monte Carlo bulk angular profiles at low APPENDIX: DIAGONALIZATION OF THE OPERATOR T
pressure, whereas they tend to be somewhat broader at high.l.he eigenvalue equation for the opera?odefined in Eq.
pressure. . . L . (12) has the form

It is interesting to notice that thé distribution obtained
within the separable approximation lies in every case very
close to that of model 2 and the Monte Carlo cura¢she F-10) WIZdH’(A( 0A(E") B(H)B(a’))( u(a’))
wall. On the other hand, the separable model profile does not ! - = f / / /
properly resemble the angular distribution in the bulk, espe- BIOYB(OT)  ALBA(6) /A W(E")
cially for large values ok. In fact, in Ref[14] it was shown ( u(a))
that if the separable model calculation is performed for a =\ ;
smaller aspect ratia;~ «*°, the resultinglbroadey angu- w(o)
lar distribution is in good agreement with the corresponding
Monte Carlo distribution in the bulk. It becomes apparentwith
that one of the main advantages of the present nonseparable
treatment is that the coupled angle-radial distributions allow
for a study of the correlation between the alignment and thef(a):( )
mobility of the particles in a natural way. w(6))’

FIG. 10. Same as Fig. 7 for a reduced pressBie=BPo
=4.0. For the sake of clarity the curves are shifted upward by 2.
(k=3, wall), 4.0 (k=5, bulk, and 6.0 =5, wall) units.

v

(A1)

A(0)=e FPoml®)  B(g)=e APom(0),

(A2)
VI. CONCLUSIONS

We have presented an analytically solvable nonseparablequation(Al) can be rewritten as
interaction model for a one-dimensional fluid of anisotropic
molecules near a hard wall. In spite of the simplicity, the 2de’
model provides a very good description for the equation of A( g)J —A0)u()
state of the system and for more sensitive properties, such as o 7
the radial and angular profiles of the particles. In particular,

. . . m2d O’

the nonseparable character of the particle interaction poten- +B(9)J' ——B(9")W(8')=Au(6),
tial leads to a coupling of the radial and angular parts of o
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B(ﬁ)f —B(#")u(6")
0 a
m2d o’
+A(0)j 7A(0’)w(6’)=)\w(6). (A3)
0
ProvidedA #0, it follows thatu(6)=«A(6)+ BB(#) and
w(6)=a’'A(6)+ B'B(0) and therefore EqA3) turns into
Im I« O O @ o
0 0 Iy Iy B B
0 0 Iy, Ik a’ =X a' |’ (Ad)
Ix Im 0 O/ \p B’

this work: (i) Ny>Np34; (i) NN —|

A NONSEPARABLE ... 1967

L) =1%+ TN

with 41=0p= +1 and q;=03=—1; (i) AA;

I ></0 ('V) (7\1 m)()\z m)
lm)=—1%; (v) the eigenvector corre-

_lm)r
:_)\3)\4

=—(N3—

ol —
Im)(Na—

sponding to the elgenvaILPe is

1
1 V2
fi(¢): W{I Xe_ﬁp(rm(¢)+()\i_|m)e_BPUM(¢)} ,
| o
J2
where Ni=|Ni(Ni— 1) (2N =gl y— 1 ) [*? is @ normaliza-

where the following notation has been introduced, which istion constant;(vi) the eigenvectors are orthonormd: f;

used throughout the present work:

/2 d¢

Im:f e—ZBP(rm(d)), (AS)
0 o
/2
'M:f %e%ﬂpom(@, (A6)
0 v
l
| :f 2d¢ = BPlom(¢)+op(¢)]
X 0 -
(A7)
Equation(A4) has four(nonzerg eigenvalues
It [(Tm=1u\% 5 M2
= +
)\1,2 2 - ( 2 +I>< ’ (A8)
=t [(ITmtIn)2 5 M2
= + —
N34 5+ 5 1% (A9)

The eigenvaluei ; ; 3 shave the following algebraic proper-

77’2(d¢>/77)f () ()= 20;;: and (vii) the dot products
v-f; —f”’z(qu/w)vT(gb)f (¢) can be expressed as

J2
v- f12—N NN o= )
1,2
N hgo— )| M2
= €12 M (61:+1! 62:_1)!
! IM+Im
1,27 2
(A10)
U f3]4= O (All)

Equation(A3) has also the solutiony=0. In this case,
any two functionsu(#),w(6), belonging to the space or-
thogonal to the one spanned by the functiéi®) andB(6)
will be a solution of Eq.(A3) with \yg=0. Note that, al-
though the subspace spannedNyy=0 is of infinite dimen-
sion, its contribution to the spectral decomposition is identi-

ties (useful for the derivation of the expressions presented ircally zero.

[1] J. K. Percus, J. Stat. Phy&9, 249(1997).

[2] R. J. Baxter,Exactly Solved Models in Statistical Mechanics
(Academic, New York, 1982

[3] Lord Rayleigh, NaturéLondon 45, 80 (1891).

[4] L. Tonks, Phys. Revs0, 955(1936.

[5] Z. W. Salsburg, J. G. Kirkwood, and R. W. Zwanzig, J. Chem.

Phys.21, 1098(1953.

[6] J. K. Percus, J. Stat. Phys5, 505(1976.

[7] 3. K. Percus, J. Stat. Phy28, 67 (1982.

[8] For a relatively recent review see R. EvansFimdamentals
of Inhomogeneous Fluidsedited by D. HendersofDekker,
New York, 1992.

[9] J. K. Percus and M. Q. Zhang, J. Stat. PH§.347 (1990.

[10] E. Kierlik and M. L. Rosinberg, J. Stat. Phy&8, 1037(1992.

[11] J. L. Lebowitz, J. K. Percus, and J. Talbot, J. Stat. PAgs.
1221(1987).

[12] J. F. Marko, Phys. Rev. Let62, 543(1989.

[13] C. F. Tejero and J. A. Cuesta, Physical88 942 (1990.

[14] F. S. Ferrero, B. Mamez-Haya, J. M. Pastor, J. A. Cuesta, and
C. F. Tejero, Mol. Phys79, 709 (1993.

[15] S. Kotz and N. L. JohnsorEncyclopedia of Statistical Sci-
ences(Wiley, New York, 1988, Vol. 9.

[16] M. P. Allen and D. J. TildesleyComputer Simulation of Lig-
uids (Oxford University Press, Oxford, 1989

[17] J. E. Finn and P. A. Monson, Mol. Phy&5, 1345(1988.

[18] J. Vieillard-Baron, J. Chem. PhyS6, 4729(1972.

[19] R. Eppenga and D. Frenkel, Mol. Phys2, 1303(1984.



